
Evolution equation for a model of surface relaxation in complex networks

C. E. La Rocca,1 L. A. Braunstein,1,2 and P. A. Macri1
1Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR)-Departamento de Física, Facultad de Ciencias Exactas y Naturales,

Universidad Nacional de Mar del Plata-CONICET, Funes 3350, 7600 Mar del Plata, Argentina
2Center for Polymer Studies, Boston University, Boston, Massachusetts 02215, USA

�Received 2 November 2007; revised manuscript received 3 April 2008; published 30 April 2008�

In this paper we derive analytically the evolution equation of the interface for a model of surface growth
with relaxation to the minimum �SRM� in complex networks. We were inspired by the disagreement between
the scaling results of the steady state of the fluctuations between the discrete SRM model and the Edward-
Wilkinson process found in scale-free networks with degree distribution P�k��k−� for ��3 �Pastore y Piontti
et al., Phys. Rev. E 76, 046117 �2007��. Even though for Euclidean lattices the evolution equation is linear, we
find that in complex heterogeneous networks nonlinear terms appear due to the heterogeneity and the lack of
symmetry of the network; they produce a logarithmic divergency of the saturation roughness with the system
size as found by Pastore y Piontti et al. for ��3.
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During the last few years the study of complex networks
has moved its focus from the study of their topology to the
dynamic processes occurring on the underlying network.
This is because many physical and dynamic processes use
complex networks as substrates. Recently, many studies of
dynamic processes on networks, such as epidemic spreading
�2�, traffic flow �3,4�, cascading failure �5�, and synchroniza-
tion �6,7�, have demonstrated the importance of the topology
of the substrate network in the dynamic process. There exists
much evidence that many real networks possess a scale-free
�SF� degree distribution characterized by a power law tail
given by P�k��k−�, where kmax�k�kmin is the degree of a
node, kmax is the maximum degree, kmin is the minimum de-
gree, and � measures the broadness of the distribution �8�.
Almost all the studies on networks regarded the links or
nodes as identical. However, in real networks the links or
nodes are not identical but have some “weight.” As ex-
amples, the links between computers in the internet network
have different capacities or bandwidths, resistor networks
can have different values of resistance �4�, and the airline
network links connecting pairs of cities in direct flights have
different numbers of passengers. Many theoretical studies
have been carried out on weighted networks �4,9�. Recently,
several studies on real networks with weights on the links,
such as the world-wide airport networks and the Escherichia
coli metabolic networks �10�, have shown that the weights
are correlated with the network topology and this dramati-
cally changes the transport through them �7,11�. For instance,
in synchronization problems, which are very important in
brain networks �12�, networks of coupled populations in the
synchronization of epidemic outbreaks �13�, and the dynam-
ics and fluctuations of task completion landscapes in causally
constrained queuing networks �14�, the weights could have
dramatic consequences for the synchronization �7�. Synchro-
nization problems deal with optimization of the fluctuations
of some scalar field h. The system will be optimally synchro-
nized when the fluctuations are minimized. The general treat-
ment to analyze the fluctuations of these processes is to map
them into a problem of nonequilibrium surface growth via an
Edwards-Wilkinson �EW� process on the corresponding net-
work �15�. Given a scalar field h on the nodes that represents

the interface height at each node, the fluctuations are charac-
terized by the average roughness W�t� of the interface at time
t, given by W�W�t�= ��1 /N��i=1

N �hi− 	h
�2�1/2, where hi
�hi�t� is the height of node i at time t, 	h
 is the mean value
on the network, N is the system size, and �·� denotes an
average over configurations. The EW process on networks is
given by

�hi

�t
= �

j=1

N

Cij�hj − hi� + �i, �1�

where Cij =Aijwij is a symmetric coupling strength, �Aij� is
the adjacency matrix �Aij =1 if i and j are connected and zero
otherwise�, wij is the weight on the edge connecting i and j,
and �i�t� is a Gaussian uncorrelated noise with zero mean
and covariance ��i� j�=2D�ij��t− t��. Here D is the diffusion
coefficient and is taken in general as a constant. For non-
weighted networks wij =�=const and thus Eq. �1� reduces to
the unweighted EW equation on a graph given by �hi /�t
=�� j=1

N Aij�hj −hi�+�i. Inspired by the results found for real
networks where the weights are correlated with the topology,
Korniss �7� studied synchronization for EW processes �see
Eq. �1�� on SF networks where wij = �kikj�� and ki and kj are
the degrees of the nodes connected by a link. Using a mean-
field approximation, he found that, subject to a fixed total
edge cost, synchronization is optimal when �=−1, and at
that point the performance is equivalent to that of the com-
plete graph with the same edge cost. Pastore y Piontti et al.
�1� used a discrete growth model with surface relaxation to
the minimum �SRM� in SF networks, which mimics the fluc-
tuation in the task-completion landscapes in certain distrib-
uted parallel schemes on computer networks, because it bal-
ances the load. They found that in SF networks with ��3
the saturation regime of W�Ws has a logarithmic divergence
with N that cannot be explained with the unweighted EW
equation in graphs, even though in Euclidean lattices the
SRM model belongs to the same universality class as the EW
equation �16�.

In order to understand this discrepancy, in this paper we
derive analytically the evolution equation for the SRM in
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random unweighted networks �1� and find that the dynamics
introduces “weights” on the links. With our evolution equa-
tion, which contains non-linear terms in the height differ-
ences, we recover the logarithmic divergency of Ws with N
found in �1� for SF networks with ��3. Let us first briefly
recall the SRM discrete model �16�, studied for SF networks
by Pastore y Piontti et al. �1�. In this model, at each time step
a node i is chosen with probability 1 /N. If we denote by vi
the nearest-neighbor nodes of i and j�vi, then �1� if hi
�hj ∀ j�vi⇒hi=hi+1, else �2� if hj �hn∀n� j�vi⇒hj
=hj +1. Next we derive the analytical evolution equation for
the local height of the SRM model in random graphs. The
procedure chosen here is based on a coarse-grained �CG�
version of the discrete Langevin equations obtained from a
Kramers-Moyal expansion of the master equation �17–19�.
The discrete Langevin equation for the evolution of the
height in any growth model is given by �18,19�

�hi

�t
=

1

	
Gi + �i, �2�

where Gi represents the deterministic growth rules that cause
evolution of the node i, 	=N�t is the mean time to grow a
layer of the interface, and �i is a Gaussian noise with zero
mean and covariance given by �18,19�

��i�t�� j�t��� =
1

	
Gi�ij��t − t�� . �3�

We can write Gi more explicitly as

Gi = 
i + �
j=1

N

Aij
 j , �4�

where 
i is the growth contribution by deposition on node i
and 
 j is the growth contribution to node i by relaxation
from any of its j neighbors with


i = �
j�vi

��hj − hi� ,


 j = �1 − ��hi − hj�� �
n�vj

�1 − ��hi − hn�� .

Here, � is the Heaviside function given by ��x�=1 if x
�0 and zero otherwise, with x=ht−hs��h. Without lost of
generality, we take 	=1 and assume that the initial configu-
ration of �hi� is random.

In the CG version �h→0; thus after expanding an ana-
lytical representation of ��x� in Taylor series around x=0 to
second order in x, we obtain

Gi = c0
ki + Ci + c1c0

ki−1ki
�
j=1

N
Aijhj

ki
− hi� +

c1

�1 − c0�
Ci
�

j=1

N
Cijhj

Ci
− hi� +

c1

�1 − c0�
Ti
�

j=1

N

�
n=1,n�i

N
Tijnhn

Ti
− hi�

− c2�
j=1

N

Aij
�kj − 1��hj − hi�2 − 
c2 +
c1

2

2�1 − c0���
j=1

N

Aij
�kj − 1�
 �
n=1,n�i

N

Ajn�hn − hi�2� + c0
ki−1
c2 −

c1
2

2c0
��

j=1

N

Aij�hj − hi�2

+
c0

ki−2c1
2

2

�

j=1

N

Aij�hj − hi��2

+
c1

2

�1 − c0��j=1

N

Aij
�kj − 1��hj − hi�
 �
n=1,n�i

N

Ajn�hn − hi�� +
c1

2

2�1 − c0��j=1

N

Aij
�kj − 1�

�
 �
n=1,n�i

N

Ajn�hn − hi��2

, �5�

where c0, c1, and c2 are the first three coefficients of the
expansion of ��x�, 
�kj�= �1−c0�kj is the weight on the link
ij introduced by the dynamic process, and

Ci = �
j=1

N

Cij ,

Ti = �
j=1

N

�
n=1,n�i

N

Tijn, �6�

with Cij =Aij
�kj� and Tijn=AijAjn
�kj�.
In our equation the nonlinear terms in the difference of

heights arise as a consequence of the lack of a geometrical
direction and the heterogeneity of the underlying network.

This result is very different from the one found in Euclidean
lattices, where for the SRM model the nonlinear terms dis-
appear due to the symmetry of the process and the homoge-
neity of the lattice.

For the noise correlation �see Eq. �3��, up to zero order in
�h �18,19� we obtain ��i�t�� j�t���=2D�ki��ij��t− t�� with

D�ki� =
1

2
�c0

ki + Ci� . �7�

Notice that all the coefficients of the equation depend on the
connectivity of node i, i.e., on the network topology of the
underlying network. This dependence on the topology can be
thought of as a weight on the links of the unweighted under-
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lying network that appears only due to the dynamics on the
heterogeneous network.

Interestingly, the linear terms are different from the
EW process as shown below. Keeping only the linear
terms in Eq. �5�, we numerically integrate our evolution
equation in a SF network using the Euler method with the
representation of the Heaviside function given by ��x�= �1
+tanh�U�x+z��� /2, where U is the width and z=1 /2 �19�.
With this representation c0= �1+tanh�U /2�� /2, c1= �1
−tanh2�U /2��U /2, and c2= �−tanh�U /2�+tanh3�U /2��U2 /2.
We build the network using the Molloy-Reed �MR� algo-
rithm �20�. In Fig. 1, we plot W2 as a function of t, obtained
from the integration of Eq. �2� using only the linear terms of
Eq. �5� with D�ki� given by Eq. �7� for �=3.5 and 2.5 and
different values of N with kmin=2 in order to ensure that the
network is fully connected. For the time step integration we
chose �t�1 /kmax according to Ref. �21�. In contrast to the
results obtained for the EW process �1�, Ws increases with N
until it reaches a constant value. As shown below, this de-
pendence of Ws on N is due to finite-size effects due to the
MR construction.

Now we apply a mean-field approximation to the
linear terms of Eq. �5�. In this approximation we
consider 1�kmin�kmax and disregard the fluctuations.
Then � j=1

N Aijhj /ki�	h
, � j=1
N Cijhj /Ci�	h
, and

� j=1
N �n=1,n�i

N Tijnhn /Ti�	h
. Multiplying and dividing Eq. �6�
by ki, we can approximate Ci by Ci�ki�
�ki�kmin

kmaxP�k �ki�
�k�dk �7�, where P��k �ki�� is the probabil-
ity that a node with degree ki is connected to another with
degree k. For uncorrelated networks, P��k �ki��=kP�k� / 	k

�8� does not depend on ki; then Ci�ki�� I1ki / 	k
 with I1
=�kmin

kmaxP�k�k
�k�dk. Making the same assumption for Ti, we
obtain Ti�ki�� I2ki / 	k
 with I2=�kmin

kmaxP�k�k�k−1�
�k�dk.
Then the linearized evolution equation for the heights can be
written as

�hi

�t
= Fi�ki� + �i�ki��	h
 − hi� + �i, �8�

where Fi�ki�=c0
ki +kiI1 / 	k
 represents a local driving force,

�i�ki�= �c1c0
ki−1+b�ki is a local superficial tensionlike coeffi-

cient with b=c1�I1+ I2� / 	k
, and �i is a Gaussian noise with
covariance D�ki�=Fi�ki� /2. This approximation shows the
full topology of the network through P�k�.

Taking the average over the network in Eq. �8�, �	h
 /�t
= �1 /N��i=1

N Fi=F; then 	h
=Ft is linear with t. The solution
of Eq. �8� �17� is given by

hi�t� = �
0

t

e−�i�t−s��Fi + �i	h�s�
 + �i�s��ds

= 
Fi − F

�i
� − 
Fi − F

�i
�e−�it + 	h
 + �

0

t

e−�i�t−s��i�s�ds .

�9�

Using Eq. �9�, the two-point correlation function for t
�max�1 /�i��1 /kmin, is

��hi�t1� − 	h
��hj�t2� − 	h
�� = 
Fi − F

�i
�
Fj − F

� j
�

+ �
0

t2 �
0

t1

e−�i�t1−s1�e−�j�t2−s2�

���i�s1�� j�s2��ds1ds2.

Then Ws can be written as

Ws
2 =

1

N
�
i=1

N 
Fi − F

�i
�2

+
1

N
�
i=1

N
2D�ki�

2�i
. �10�

For SF networks it can be shown that I1 , I2�const
+kmax exp�−kmax�const�, where kmax�N1/��−1� for MR net-
works; thus finite-size effects due to the cutoff on these
quantities can be disregarded. Replacing in the last equation
D�ki� by Fi�ki� /2, we obtain

Ws
2 � 
1 − 2	k
� 1

k
� + 	k
2� 1

k2�� + const. �11�

Notice that, if Fi=0, D=const, and �i�ki, we recover the
EW equation found in �7�. Using the corrections due to
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FIG. 1. W2 as a function of t from the integration of the evolu-
tion equation using the linear terms for N=256 ���, 384 ���, 512
���, 768 ���, and 1024 ���. �= �a� 3.5 and �b� 2.5. In the inset
figure we plot Ws

2 vs N in symbols. The dashed lines represent the
fitting with Eq. �12�, obtained by considering the finite-size effects
introduced by the MR construction. For all the integrations we used
U=0.5 and typically 10 000 realizations of networks.
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finite-size effects introduced by kmax �1� in Eq. �11�,

Ws
2 � Ws

2���
1 + q1
1

N�−2/�−1 + q2
1

N
� , �12�

where Ws
2���=Ws

2�N→�� and q1 and q2 are constants. In the
inset of Figs. 1�a� and 1�b� we plot Ws

2 as function on N and
the fitting obtained from Eq. �12�. The agreement with the
scaling form, Eq. �12�, is excellent. Thus, the linear approxi-
mation can only explain the finite-size effects due to the MR
construction but fails to predict the logarithmic divergency of
Ws with N for ��3 found in Ref. �1�. Next we show that the
nonlinear terms are responsible for this behavior. We inte-
grate our evolution equation for SF networks with the linear
terms and only the first nonlinear term �see Eq. �5�� due to
the numerical instability produced when we try to incorpo-
rate all of them. Even with only one nonlinear term, we
recover the logarithmic divergency of Ws with N for ��3.
The results of the integration are shown in Fig. 2, where we
plot W as a function of t for �a� �=3.5 and �b� �=2.5 and
different values of N. In the inset figures we plot Ws as a
function of N. We can see that, for �=3.5, Ws increases but
asymptotically goes to a constant and all the N dependence is
due to finite-size effects. However, for �=2.5 we found a
logarithmic divergency of Ws with N �1�, as shown in the
inset of Fig. 2�b�, where we plot Ws as a function of N on a
log-linear scale. The fit of Ws with a logarithmic function for
�=2.5 shows the agreement between our results and those
obtained for the SRM model in SF networks for ��3. Dis-
crepancies between behaviors in regular Euclidean lattices
and Euclidean lattices after addition of random links were
found before in �22�.

In summary, we derived analytically the evolution equa-
tion for the SRM model and found, surprisingly, that even
when the underlying network is unweighted the dynamics
introduces weights on the links that depend on the topology.
We also found that the linear terms can explain only finite-
size effects due to the MR construction. The linear mean-
field approximation shows clearly the effects of the topology
on the dynamics and the corrections due to finite-size effects.
When nonlinear terms on SF networks are considered, new
numerical integration algorithms are needed in order to avoid
numerical instabilities. This is still an open problem to be
solved in the future. With all the linear terms and one non-
linear term, we recovered the logarithmic divergency of Ws

with N of the SRM model for ��3. Our analytic procedure
can be also applied to any other growth model.
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